Feasibility of Agricultural Groundwater Banking and its impact on groundwater storage

Helen Dahlke, Tiffany Kocis, Andrew Brown, Toby O’Geen, Steve Orloff, Dan Putnam, Astrid Volder, Ken Shackel, Thomas Harter, Sam Sandoval-Solis

OCTOBER 12, 2017
EMAIL: hdahlke@ucdavis.edu
California Extremes

2017 FLOODS

2012-2016 DROUGHT

U.S. Drought Monitor
October, 2015

Sources: DWR 2017, temblor.net, droughtmonitor.unl.edu
State of groundwater resources in the Central Valley, California

Groundwater storage withdrawal (-) and recovery (+) (million acre-feet)

- Sacramento Valley
- Eastside streams
- Sacramento-San Joaquin Delta
- San Joaquin River Basin
- Tulare Basin
- Central Valley

Water year:
- 1922
- 1925
- 1928
- 1931
- 1934
- 1937
- 1940
- 1943
- 1946
- 1949
- 1952
- 1955
- 1958
- 1961
- 1964
- 1967
- 1970
- 1973
- 1976
- 1979
- 1982
- 1985
- 1988
- 1991
- 1994
- 1997
- 2000
- 2003
- 2006
- 2008

Harter 2015, CalAg
Agricultural Groundwater Banking

• Farmland is flooded during the winter using surface water to recharge the underlying groundwater
• Large spreading areas are needed to capture runoff from the few (6-10) storms that bring rainfall in California
• 8 million acres of farm land that could serve as spreading grounds
• Existing irrigation infrastructure could be used to move water from streams to farmland
Agricultural Groundwater Banking

- COST
- LOCATION
- LAWS & PERMITS
- STORAGE & RECOVERY
- WATER QUALITY
- CROP
- SOIL
- WATER AVAILABILITY

AGRICULTURAL GROUNDWATER BANKING

Map showing locations of agricultural crops such as Alfalfa, Almond, Pistachio, and Pecans in California.
Flooding Tolerance Studies
Crop Suitability - Alfalfa

- **Alfalfa** supports $7.6 billion dairy industry
- In 2013 largest acreage crop in CA (~ 1 million acres) → high likelihood to find land on suitable soils
- Relatively low use of fertilizers, pesticides → low risk for leaching
- Flood irrigation with surface water most common (75%) → allows fast spreading of large water amounts
- Conducted flooding experiments in two locations in winter of 2014/15; repeated experiments in Scott Valley in 2015/16
On-Farm recharge experiments - Alfalfa

- Three winter water application rates:
 - **Continuous** – every day
 - **High** – 3-5 water applications per week
 - **Low** – 1-3 water applications per week
 - **Standard** - no winter water application

- Use Thornthwaite-Mather soil water balance model to estimate **deep percolation** and losses to evapotranspiration and soil storage

- Use 1D van Genuchten-Mualem model to estimate recharge into deeper soil

\[\text{AWC} = \text{available water content} \]
On-Farm recharge experiments - Alfalfa

2014/15 dry year:
- Early dry-out in standard plot
- Recharge increases plant available water
- Loss to ET, soil storage is 1-7%
- Total recharge was 135 AF

2015/16 Above normal year:
- Late dry-out
- No benefit for plant available water
- Loss to ET soil storage is 1-2%
- Total recharge was 107 AF

Dahlke et al. 2017, CalAg
On-Farm recharge experiments - Alfalfa

- Water table rose up to 6 ft in response to winter recharge
- Application of up to 26 ft of water caused no discernible difference in alfalfa yield
Crop Suitability - Almonds

- Tree stem water potential (SWP) indicates that trees in the flood treatment remained more hydrated than the control trees.
- There were no statistically significant differences in yield (Nonpareil almond variety).

![Graph showing SWP and yield data for Modesto and Delhi soil types.](image)
Crop Suitability - Almonds

- Application of 60 cm (2 ft) of water in Dec.-Jan.
- Root zone remained saturated up to 48 hr after recharge events
Crop Suitability - Almonds

Flood Treatment

Control

\[NO_3^- = NO_3^- - N \times 4.43 \]
Crop Suitability - Almonds

Flood Treatment

\[\text{NO}_3^- = \text{NO}_3^- - N \times 4.43 \]

Control

Modeesto site
Surface Water Availability for Recharge
High-magnitude streamflow assessment for groundwater recharge

• Historical daily streamflow records for 93 stream gauges (13 unimpaired, 80 impaired)
• 90th percentile used to designate high-magnitude flows (HMF), determined from full historical record
• Metrics: magnitude, duration, frequency and timing
• Analysis is conducted for:
 • different time periods (annual, Nov – Apr, Dec – Feb)
Metrics for Time Series Analysis

Magnitude:
- Volume of flow above the 90th percentile

Duration:
- Number of days above the 90th percentile per time period

Frequency:
- Number of peaks above the 90th percentile within period (intra-annual)
- Number of years with flow above the 90th percentile (inter-annual)

Timing:
- Day of Hydrologic Year (DOHY) that peak event occurs
High-magnitude flows for groundwater recharge

Average total flow above 90th percentile

<table>
<thead>
<tr>
<th>Outlet</th>
<th>Dec-Feb</th>
<th>Nov-Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac Valley</td>
<td>1.15 MAF</td>
<td>1.88 MAF</td>
</tr>
<tr>
<td>SJ Valley</td>
<td>0.5 MAF</td>
<td>0.97 MAF</td>
</tr>
</tbody>
</table>

Average flow above 90th percentile during wet years

<table>
<thead>
<tr>
<th>Outlet</th>
<th>Dec-Feb</th>
<th>Nov-Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac Valley</td>
<td>1.75 MAF</td>
<td>3.01 MAF</td>
</tr>
<tr>
<td>SJ Valley</td>
<td>0.65 MAF</td>
<td>1.21 MAF</td>
</tr>
</tbody>
</table>

- A single, average wet year in the Sacramento Valley can provide two-times the annual groundwater overdraft.
- 30% of years are “wet” (post-impairment record)
Caveat – True Availability of High-Magnitude Flows, Timing, Frequency
Kern River HMF availability
Streamflow Availability Rating for Recharge (STARR)

- STARR index indicates the most suitable watersheds for ag-recharge in terms of water availability relatively to other watersheds.
- Uses 3 terms:
 - \(V/A \) = HMF volume / watershed area
 - \(D/P \) = number of HMF days / number of days in period
 - \(YWF \) = fraction of years with HMF
- Terms are ranked individually into six equal-area classes and weighted using Rank Ordered Centroid method:
 \[
 \text{STARR} = 0.61 \times \text{ranked}(YWF) + 0.28 \times \text{ranked}(\frac{V}{A}) + 0.11 \times \text{ranked}(\frac{D}{P})
 \]
- STARR values are divided into 6 equal-interval classes from excellent to poor surface water availability.
- Created for the same time periods as the metric analyses.
Decision Support Tools on Soil Suitability
Soil characteristics:

- Hydraulic conductivity
- Occurrence of restrictive layers
- Topographic Limitations (slope)
- Chemical Limitations
- Surface Condition (e.g. crusts, erodibility)

http://casoilresource.lawr.ucdavis.edu/sagbi

O’Geen et al. 2015, CalAg
Soil Agricultural Groundwater Banking Index

TABLE 2. Summary of the areal extent of Soil Agricultural Groundwater Banking Index groups generated from soil survey data

<table>
<thead>
<tr>
<th>SAGBI group</th>
<th>Original SSURGO data</th>
<th>SSURGO modified by deep tillage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acres</td>
<td>%*</td>
</tr>
<tr>
<td>Excellent</td>
<td>1,477,191</td>
<td>8</td>
</tr>
<tr>
<td>Good</td>
<td>1,747,712</td>
<td>10</td>
</tr>
<tr>
<td>Moderately Good</td>
<td>1,786,972</td>
<td>10</td>
</tr>
<tr>
<td>Moderately Poor</td>
<td>1,343,250</td>
<td>8</td>
</tr>
<tr>
<td>Poor</td>
<td>4,866,942</td>
<td>28</td>
</tr>
<tr>
<td>Very Poor</td>
<td>6,375,277</td>
<td>36</td>
</tr>
<tr>
<td>Total†</td>
<td>17,597,345</td>
<td></td>
</tr>
</tbody>
</table>

O'Geen et al. 2015, CalAg
Soil Agricultural Groundwater Banking Index (O’Geen et al. 2015, CalAg)
Groundwater Modelling
Groundwater Modeling

- California Central Valley Groundwater-Surface Water Simulation Model
- Fine-mesh version (>35,000 elements), 1921-2009
- Diversion of high-magnitude flows onto soils rated as Excellent and Good in SAGBI
Groundwater Modeling

Diversion of high-magnitude flow (flow > 90th percentile) at 42 nodes

The color ramp shows the number of diversion nodes each subregion receives water from.

Two scenarios:
1. Recharge of excess surface within local basin (e.g. within Sacramento River basin)
2. Recharge of excess surface water Central-Valley-wide (export through the Delta)
Cumulative applied water in each scenario

Excellent soils only

Excellent and good soils

Very few excellent recharge areas in Sacramento Valley

Cumulative applied water [TAF]
- < 5
- 5 - 10
- 10 - 20
- 20 - 50
- > 50

per element (~400 acres)
Change in groundwater storage

- 120 MAF – total excess surface flows diverted between 1921-2009 for recharge
- Groundwater storage gain over same period is about 30 MAF (1/5th of depletion)
- Most of recharged water returns back to stream

Loss of ~150 MAF

Base scenario (current depletion)
Relative gain in groundwater storage by region
• Difference between base scenario and recharge scenario

Recharge locations vs. stream locations
Where does all the water go?

- Cumulative streamflow gain from groundwater (1921-2009).
- Negative values represent a stream loss to groundwater.
Conclusions

• Alfalfa, almonds, pecans are promising crops if grown on suitable soils with high percolation rates

• In some alfalfa fields 26 ft of water could be recharged in 30 days without decline in yield

• High-magnitude flows potentially provide an untapped source of water during the winter months

• Short duration events and low frequency of high-magnitude flows suggests a need for coordinated efforts for the local-scale utilization

• Agricultural groundwater banking can increase instream flows, help mitigate floods, and improve groundwater supply for disadvantaged communities
THANKS!!

hdahlke@ucdavis.edu

Acknowledgments:

Many thanks to Steve Orloff, Allan Fulton, Dan Putnam, Roger Duncan, David Doll, Nicole Stevens, Jim Morris for help and logistical support.